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Chemical Reactions as Dynamical Systems 
on the Interval 
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We consider the most general chemical reaction of the type 

n l A l  + . . .  + n N A N ~ m I B I  + .. .  + m M B  M 

where N, M~> 1, nz,.. . ,n N and ml , . . . ,m  M are positive integers defining the 
stoichiometry, and A 1 , . . . ,  A N and BI,..., B M are the names of chemicals or ions. 
We assume that Z~-I n - M i - 52j= t mj. The time evolution of the concentrations is 
given by the law of mass action and leads to a dynamical system (with discrete 
or continuous time) which is governed by a polynomial map of the interval 
[B, C], where B I> 0 and C ~< 1. We define the physically meaningful range for 
the parameters of the map, and we show that, within such a range, the map has 
a unique fixed point, which is stable and a global attractor, with the exception 
of one particular case, where bifurcation is observed. 
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1. I N T R O D U C T I O N  

T h e  s tudy  of  the  e v o l u t i o n  of  c o m p l e x  c h e m i c a l  r eac t ions  cons t i tu t e s  a 

la rge  field o f  r e sea rch  which  is still the  subjec t  of  s o m e  dispute .  (1) N o t  

e v e r y o n e  agrees  as to  the  cause  of  the  chao t i c  b e h a v i o r  seen expe r imen ta l ly .  

E v e n  the  chaos  s o m e t i m e s  f o u n d  in n u m e r i c a l  s i m u l a t i o n s  m i g h t  be m o r e  

a resul t  of  the  a p p r o x i m a t i o n s  t h a n  a p r o p e r t y  of  the  o r ig ina l  d y n a m i c a l  

sys tem.  W e  t ake  the  v iew tha t  these  q u e s t i o n s  a re  best  t ack led  by an  exac t  

ana lys is  of  mode l s ,  a n d  this p a p e r  is the  first o f  a series in wh ich  m o d e l s  

of  i nc rea s ing  c o m p l e x i t y  are  s tudied.  
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In ref. 2 a general method is described for constructing "stochastic 
models" of chemical reactions, of the form 

r t l A l +  . . .  + n N A N ~ _ m l B I  + . . .  + m M B  M 

The process is regarded as "stirred," that is, the state is described by the 
c o n c e n t r a t i o n s  PAl,'", PAN and q~l ..... qeM. In the stochastic model, PAj = P j  

and q~k = qk are regarded as the (relative) probabilities that a particle, ran- 
domly fished out, will be, respectively, of type A~,..., BM.  Here, we do not 
consider the case where some of the A's and B's are the same chemical, 
called the autocatalytic case, as this will be the subject of a future paper. 

For  the nonautocatalytic case, which we investigate here, i.e., for the 
case when no A is equal to any B, the law of mass action gives the rate 
equations 

dpj 
dt - n j2(q71" '"  q M M -  P11"'" puN), j = 1,..., N 

k 

dt 
_ mk) . (q ,~  m M  nl 

" ' ' q M  - - P l  " " P ~ ) ,  k = l , . . . , M  

(1) 

where )~ > 0 is the rate constant. These generalize the equations of refs. 3 
and 4. 

If nl + ... + nN = m l  + . . .  + m M ,  we say the system is "balanced." In 
that case (2) we can express the discrete form 

p *  = p j  + njkt(q'] L . . .  q~t M -  pnll . . .  pU~), 

q*  = qk - m k p ( q ~  1"" mM nl "qM -- P l  '''PUN), 

j = 1,.., N 
(2) 

k = l  ..... M 

as a Boltzmann map on a probability space and this guarantees that 
(p*, q*) is a probability (Pi, qj lie in [0, 1] and Z P i + Z  qj= 1) and that 
entropy is a nondecreasing function along the map, for a range of p > 0. 
The fact that (2) looks like a discretization of (1) will be discussed in a 
future paper. 

The "stochastic models" require the equations to be balanced. Thus, 
the total number of particles is conserved. Classical probability cannot 
describe models in which the number of particles changes; a second-quan- 
tized theory would be needed if the particles appear and disappear. (There 
is no difficulty in classically describing particles that change identity.) The 
interaction is described by a bistochastic matrix T, whose entries are 
limited by the Markov condition. Within this class, the Boltzmann map 
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must take probability measures to probability measures, since it is given by 
the composition of maps: 

(+) p~--~ p |  p |  @ p~---~ T p I E i . .  ) " ~ p  

n t i m e s  

(3) 

where the last map E is conditional expectation onto the first factor, 
n = Z ~  hi, and T is a bistochastic matrix of size ( N +  M)" x ( N +  M)". I2) 

It is for this class of models that we here prove the existence and 
uniqueness of the fixed points and convergence to them. Equations (1) and 
(2) involve N + M  unknowns Pl ..... qM, and N +  M - 1  relations given by 
Z P i + Z  qs = 1 and the conserved quantities of the equations, of which 
there are N +  M - 2  further independent ones. Thus the dynamics reduces 
to a nonlinear map [B, C]  ~ [B, C]  for the remaining single variable, 
where the nonnegativity of the probabilities implies that B >~ 0 and C ~< 1. 
In Section 2 we give some examples of chaotic maps. In Section 3 we study 
the detailed case nA ~- m B +  lC, some of the results of which are useful in 
Section3.1, which "generalizes" this to nA~--rnlB~+ ... + m M B ~ .  In 
Sections 4 and 5 we treat the remaining cases. For technical reasons, the 
cases in Sections 3 and 5 cannot be treated as special cases of those in 
Section 4. Section 6 is devoted to the study of the stability of the fixed 
points and to questions concerning the entropy of the systems. 

If the couplings # in r become large, we see the usual phenomena of 
bifurcation and chaos. However, there is an upper bound, #o, for # beyond 
which the matrix T is not bistochastic. We call [0, #o] the "bistochasticity" 
range for #, which is also the physically meaningful range. We find that the 
lower bound for # such that chaos occurs is larger than #o; therefore 
this phenomenon is not allowed in this theory except for values of the 
parameter which make no physical sense (e.g., corresponding to negative 
cross sections). The most complex behavior we observe, within the physical 
limits, is the emergence of limit cycles of period two, which will be dis- 
cussed in Section 5. 

2. C H A O S  F R O M  C H E M I C A L  R E A C T I O N S  

Let us look at some particular autocatalytic and nonautocatalytic 
maps. 

Example /. 2A ~--- A + B. In this case we have 

r(p)  - p'  = (1 + #) p - 2#p 2 
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Defining p=c~y+f i  with c~= ( # 2 _  1)/8# and /~= (1 + # ) / 4 # ,  and sub- 
stituting in the expression for p ' ,  we get y ' =  1-vy  2, the logistic map,  (s) 
where v = ( # 2 _  1)/4. As the range v e [-3/4, 3/2] contains all the values for 
which the m a p  undergoes  bifurcat ions and eventually chaos, we will see the 
same pat terns  arise for z"(p),  n = 1, 2,..., by letting # vary in [-2, x / 7 ] ,  and 
choosing an initial condi t ion p e [ / ~ -  e,/~ + ~] c [0, 1]. 

Example 2. 2A ~ B + C. Similarly to Example  1, we can t ransform 

r (p )  -= p '  = p - 2#(p  2 - q~q2) 

into y ' = l - v y  2, by letting y = ~ p + f l  with ~ = 6 # / [ # 2 ( 4 - 3 c 2 ) - 1 ] ,  
/~ = 2(# - 1)/[,#2(4 - 3c 2) - 1], and v = [#2(4 - 3c 2) - 1]/4, where 

c = q ~ -  q2 depends on the initial conditions. It  can be shown that  there 
exists a subset [a, b ] c  [0, 1 ] f rom which a p can be picked up such that  
c and # can be adjusted to make  v take all the possible values in [-3/4, 3/2],  
for a fixed y in a subinterval  of [- - 1, 1 ]. Therefore,  also this m a p  can give 
rise to chaotic  behavior.  

Example 3. A + B ~ C + D. Here we can see that  

"c(Pl) =- P '  = Pl - # ( P I P 2 -  qlq2) 

zz(Pl)  = P" = Pl - #'(P~P2 - qlq2) 

where # ' = 2 # - #  2. So, for a given # we can write v,(n)(pl) = 
P l -  #{~-1) (PIP2-  qlq2), and the dynamics  can be th rown from the space 
of probabi l i ty  measures  into the dual space - - t he  space of the maps  %-- i .e . ,  
we can write % ~ ~'u = vu,. Now,  if we let # = y + 1, we can t ransform the 
m a p  for # into y ' =  _y2, f rom which we deduce that:  

(i) # e ( 0 ,  2) implies # ( ~ ) ~  1 as n ~  oo. 

(ii) # = 0, 2 implies #(n) = 0 for every n ~ N. 

(iii) # > 2 implies #(") ~ - m  as n ~ oo. 

More  general examples  can be given, like (n + 1 )A ~ - n A  + B, for 
which p '  = #pn(2p - 1 ) and the only nonzero  fixed point  is/~ = 1/2. It  is easy 
to see that /~ becomes unstable for # > 2n; and so on. 

On  the other  hand,  if we want  to s tudy our  reactions within the limits 
that  m a k e  physical  sense, we mus t  observe the following. Given a chemical 
react ion of the form presented in Section 1, there is a bistochastic matr ix  T 
whose entries Til....,i,;jl,...,j, represent  the scattering probabil i t ies for the 
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process Cii + . . .  + C~o---, Cj~ + . . .  + Cjo, where C~k is one of the A's or 
of the B's, according to a fixed ordering, e.g., C~= A~ for i =  1 ..... N and 
C i + N - - B  i for i =  l,..., M. In order to have Til.....~o;j~.....j ~> 0, we must have 

/ ~  ( n -  1)!/max{n1 !--"nN!; m l ! . . . m M ! }  

This defines the bistochasticity range. Therefore, the physically meaningful 
range turns out to be out of the range where instabilities and chaos 
occur, for the examples previously described. Furthermore, if we aim to 
approximate the solution of (1) by (2), we are interested in small values of 
#, and we fall into the bistochasticity range. Therefore, spurious chaos can 
be "discovered" in the dynamical system (1) simply by approximating it by 
(2), with too large a time step, i.e., too large #. 

3. A DETAILED e A S E  

We consider all the reactions of the form 

nA ,~- m B  + lC 

with l, m, n ~ N and n = l +  m, so the system is balanced. The method has 
three stages. We first identify an invariant compact set under the map. 
Then we show that the iterated map drives any initial state into this set. 
Finally we show that the map is a proper contraction on this set, and so 
converges to a unique fixed point from any initial state. (6'7) 

The sample space we have is f~ = {A, B, C}; then the set of probability 
measures on it, ~ = {P}, is made of triples P =  (PA, PB, P c ) E  ~3 such that 
0 <~ p~ ,  Ps ,  P c  ~< 1, and Zc= A Pi---- 1. The discrete map ~: ~ ~ ~ that takes 
P at the instant t to P'  at the instant t + 1 is defined by the following set 
of equations: 

n l 
P'A = PA - n l~(PePc)  = PA --  n#D, say 

P's = P~ + m # D  (4) 

P'c = P c  + lpD 

where g > 0. D is called the disequilibrium parameter. 
We see that the map z preserves PA + P8 + P c  = 1 and the quantity 

q = m p A  +npB.  That p ] ,  p~, p ~ > 0  follows from the general result, (2) 
provided that the system comes from a bistochastic process. The condition 
for this is # ~< 1In. Then, the nonnegativity of PB and Pc  implies PA <~ q/m 

and p A ~ ( n - - q ) / l ,  and eliminating PB and Pc,  we get a map 
P'A = PA -- npD(pA)  from [0, C]  to itself, where C = min{ 1, q/m, (n - q) / l} ,  
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which we also denote by r. Our first lemma identifies [-0, 1/2] as an 
invariant subset, for the cases in which C ~> 1/2. 

Lemma 1. If C >/1/2 and # ~< l/n, the interval [0, 1/2] is invariant 
under z; otherwise it is [0, C]  that is invariant. 

Proof.  If C~< 1/2, the preservation of the probabilities under 
trivially makes [0, C]  invariant. Therefore, let us take C > 1 / 2  and 
x- - - -pAt  [-0, 1/2]. IfD~>0, then x ' = x - p n D ( x ) < ~ x ,  so x '~  [0, 1/2]. So we 
may a s s u m e D ( x ) < 0 .  T h e n x ' < ~ x - D ( x ) = x  x" m l -- + P B P c "  Let 7 =  1--x.  
The maximum o fp~  p~,  subject to P8 + P c  = 7, occurs where its logarithm 
is a maximum. But m log y + / l o g ( y -  y) has its maximum at y such that 
m/y  = l/( 7 - y),  i.e., y = y(m/n),  ~ - y = 7(I/n). So, putting pe = y and 
p c = V - y ,  we get, for D < 0 ,  

x ' < < . x - x ~ +  ( 1 - x ) " = f ( x )  say (5) 

For  n = 2  and l =  1 = m  the right-hand side is x - x 2 + ( 1 - x ) 2 / 4 ,  which 
takes its maximum value, 1/3, at x =  1/3, giving x'~< 1/3 e [0, 1/2]. For  
n = 3, I=  1, m = 2 (or vice versa) we get f ( x ) =  x -  x 3 +  4(1 -x)3 /27 ,  which 

has its maximum at x = ( 8 +  6 ~ ) / 6 2 ~ 0 . 5 5  and its minimum at 
x = (8 - , , ~ ) / 6 2  < 0. Hence f is monotonic increasing in [0, 1/2] and 
f ( x )  <~f(1/2) < 1/2. Hence x '~  [0, 1/2]. 

Finally, for n/> 4, as m and l vary, m + l = n, 

log[ (m/n)  m (l/n) t ] = m log(m/n)  + l log(l/n) 

the negative entropy function, has its minimum at l = m, and is concave, so 
takes its maximum at the endpoints l =  1, m = n -  1 (or vice versa). Hence 
we get 

x ' < ~ x - x ~ +  - ( 1  - x ) n < x  - + - ( 1  - - x ) n = f l ( X )  (6) 
n n 

If x~<l/4, x ' < l / 4 +  1/n<~l/2, so we may limit the discussion to 
x e [-1/4, 1/2]. Now, f l  is an increasing function in this range, as, for n/> 4, 

f ' m ( x ) = l - n x n - ~ - ( 1 - x ) " - ~ > - l - 4 ( 1 / 2 ) 3 - ( 3 / 4 ) 3 > O  (7) 

So 

f l ( x ) < ~ f l  = 2 -  +-n < 2  

This proves x '~  [-0, 1/2] for n ~> 4, too. �9 
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We note that  by Brouwer 's  fixed-point theorem, ~ z has a fixed point  
in [0, 1/2]. We now show that the set [0, 1/2] is a global attractor.  

L e m m a  2. If C >  1/2 and x ~  [-1/2, C ] ,  then ~kxe [0, 1/2] for all 
k >~ 2 n -  x / # ( n  - -  1 ). 

P r o o f .  If x ~ [1/2, C ] ,  1 - x  = ~ ~< 1/2, and we have 

X X t n m l - = n # ( x  - p B p c )  

i> n/~ - m a x  E y m ( 7  - y ) t  

(8) 

So a step left of size > e  occurs as long as x >~ 1/2, so we reach 1/2 in at 
most  1/(2e) = 2" ~ / k t ( n -  1) steps. [] 

We note that the conserved quanti ty q lies between 0 and n. If  q = 0, 
then P A  = 0 = P B  and if q = n, PA = 0 = P c  and the reaction does not  take 
place, i.e., we are at a fixed point. If 0 < q < n, the motion,  inside ~, is con- 
fined to a line not  intersecting these fixed points. The mot ion  therefore lies 
at a distance ~> 6 > 0 from these fixed points. We now show that the map  

is a contract ion with norm uniformly less than 1 in [0, a ] ,  where 
a = rain(C, 1/2). 

kemma 3. If  0 < q < n ,  and #~<l/n,  then r is a contract ion on 
[0, a]. 

Proof. As a~< i/2, it is safe to study v in E0, I /2 ] .  We show 
that  supx~[o,1/2] [ ( d / d x ) r ( x ) [ < l .  Note  that p B = ( q - m x ) / n  and p c  = 

(n  - q - l x ) / n .  Then 

d r  _ n Z # x  n -  1 - -  = 1 _ m 2 p ( q  _ m x ) m -  1 Ptc  
d x  n m -  1 

_ 121xp~ (n  - q - l x )  l -  1 
n l - - 1  

l _ n 2 # x n - 1  m Z # p , ~ - l p t c _ , 2  , ,  t - 1  = - -  t # p ~  P c  

= 1 - F ( x )  say (9) 
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Since F(x)> 0 and continuous on a compact set, we have 

dz 
inf F(x)>O so < 1 - 5 ,  x e  [0, 1/2] 

xE [0,1/2] dxx 

for some e > 0. So it remains to show F(x)< 2-  5. 
I f n = 2 ,  l = l ,  a n d m = l ,  

.<1/3_ ) 
F(x)=#(4x+ps+pc)=l~(3x+ 1 ) - . ~ [ ~ +  1 < 2  

as required. 
Ifn~>3 a n d m = l , l = n - 1 ,  then, a s / ~ < l / n ,  p u t y = p s ,  and 

F(x)<l_[n2x,~_l+(l_y)n l+(n_l)2y(l_y),~ 2] 
?l 

The maximum of H =  (1 - y)n 1 + (n - 1)  2 y(1 - y)" 2 in 0 ~< y ~< 1 occurs 

at y = 1In. Hence 

'E F(x)~ n n2x~-l+H 

~<n + < 3 .  + 1 < 2  (10) 

Finally, if l >~ 2, m >/2, and n >t 4, we have 

F(x)<<.l{n2x" '+ym--l(1--y)' ~[m2(1--y)+12y]}, 0~<y~<l (11) 
17 

The maximum of y m - - l ( 1 -  y)~ 1 occurs at 

m- -1  1--1 
Y = n - - 2 '  1 - - Y = n - - 2  

and is ( m - l )  m 1 ( / _  1) /  1/(n_2)n 2. The maximum of m2(1-y)+12y 
is max(/2, m2). 

As we vary l and m with l+m=n fixed, the maxima of 
( m  - 1)m- 1 ( l -  1)l- 1 occur at the endpoints m = 2, l = n - 2 or vice versa. 
So 

F(x)<~[ n2xn-1 +(~_2~5(  n ( n  - 3 ) " -  3 _ 2 ) 2 ]  

~<n + n (n_2 )n_4  < 2  (12) 
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3.1. A G e n e r a l i z a t i o n  

We can now treat the case 

n A ~ - m ~ B x  + . . .  + m M B M  

with M >~ 3, which implies n = Y~=I mj/> 3. Here we have 

P'A = PA - nl~(p] - q ~ . . .  q~F) = PA - n # D  

m j p A  + n q j =  Ki,  j =  I,..., M 

and 

1565 

(13) 

(n- -2)  n-2 
< ~ P A - P ~ - ~  n ~ (1--pA) n 

ml m2 mM 
m I m 2  . . . m  M 

P ' A < ~ P A - - P ] +  n" (1--pA)" 

L = m~ log ql + m2 log q2 + "'" + mM log qM 

Let Y~i Pi = (PA in the present case) = 7, Z j  qj = (1 - 7 )  be fixed. Then using 
a Lagrange multiplier, we get the maximum of L at 

Furthermore, 

Fn I m M 
ql = - - 7  ..... qM = 7 (15) 

/'/ n 

ml m2 mM (n - -  M +  1)n M+ t 
m 1 m 2 . . . m  M (16) 

if ml + m2 + " ' "  + mM = n. This can be shown easily in several different 
ways; e.g., by induction; one needs to check that the statement is true for 
M =  1, and then the general result for M = N +  1 is implied by the case for 
M = N as a consequence of the fact that 

( K + I ) K + l x X ~ ( K + x )  x+~ Vx~>l 

With this result in our hands, we can prove that 

1 
<~pA--p~A + ~ 5 ( 1 - - p A )  n (17) 

Before we prove the three lemmas given above for the present case, we 
need to observe that the maximum of q~'~..-q~M is achieved at the same 
place as its logarithm 

(14) 



1566 Rondoni and Streater 

Let C =  mini1,  m i n s ( K / m j )  ] and repeat now, mutat is  mutandis,  the same 
argument developed for the proof of Lemma 1, to get the same result: 

k e m m a  1 '. If C i> 1/2, and # ~< 1/n, the interval [0, 1/2] is invariant 
under ,; otherwise it is [0, C]  that is invariant. 

The reasoning used to prove Lemma 2 will lead here to the following: 

k f lmma 2'. If C >  1/2 a n d p A e  [1/2, C],  then ZkpA ~ [0, 1/2] for all 
k >...n2n- ~/#(n 2 -  1). 

Finally, we can repeat the proof of Lemma 3, splitting it in two parts: 
n = 3 and n/> 4, to get a very similar result for the present case: 

Lf lmma 3'. I f K j # O f o r j = l , . . . , M ,  and#<<.l /n ,  t h e n z i s a c o n t r a c -  
tion on [0, a],  where a = rain(C, 1/2). 

4. T H E  H I G H E R  N O N A U T O C A T A L Y T I C  R E A C T I O N S  

We consider 

n s A l +  ""  + n N A N . - ~ - m l B I +  "'" + m M B M ,  M , N > ~ 2  

where the chemical types A 1 ..... BM are all different. (If one Ai and one Bj 
are the same, the reaction is called autocatalytic.) Let nl be (one of) the 
largest coefficients ns ..... mM. We assume that the reaction is balanced and 
let ns + " .  + nN = ms + ""  + rn M = n. We have the conserved quantities, in 
terms of the probabilities pl ..... Pn of As ..... AN and qs ..... qM of B1,..., BM: 

n s q s + m j p l = K j ,  j = l  ..... M 
(18) 

ns p i -  niP1 = L~, i = 2,..., N 

The values of the constants of the motion L2 ..... KM are determined by 
the initial conditions, and it follows from them that P s i > B =  
max[0, maxi_ 2,...,N(--Li/ni)] and Ps ~< C =  min[-1, mini= s,...,M(Ks/mj) ]. The 
relations (18) ensure also that P2,..., qM are linear functions ofps ,  and the 
motion then becomes a mapping of [B, C]  to itself: 

P'I = p s - n l # ( P n l  ' . . .p~V q,~, . . ,  q~tM)= p l - F ( p s )  (19) 

We show that, away from the fixed points on the boundary, 
0<SUpp~ dF/dpl  <2, provided that # is smaller than the bistochasticity 
limit. The reaction does not proceed if one of the p~ is zero and one of the 
qs is zero. Otherwise it does. So a sufficient condition for a fixed point is: 
K s vanishes for one value of j E (1 ..... M ). This deals with P s as the special 
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variable. There are other constants of the motion (linear combinations of 
our Kj, L~) that correspond to other choices, namely all those of the form 
co=n~qj+rnjp ~, and if one of them vanishes, the reaction does not 
proceed. Let No = min(N, M). Then we can prove the following: 

Lemma 4. (a) If c o # 0 Vi, j, then z is a contraction on the interval 
[B ,C] ,  provided that N, M~>3 and # < 2 ( n - l )  N~ 2/n. (b) If M = 2 ,  
N~>3, and c~j=#O 'r then ~ is a contraction on the interval [B, C],  if 
i ~ l / m a x ( m j ) .  (c) If N = 2  and cg#O Vi, j, r is a contraction on [B, C]  
whenever p ~< 1/nl. 

ProoL Suppose that all the c o for i = l  ..... N and j = l  ..... M are 
different from zero. Then the reaction proceeds, and the constants of the 
motion remain the same, so the motion lies on a compact  set 

~e = {Kj = const, Li = const } c~ 

where .~ is the simplex { 0 ~ < p ~ , q j ~ < Z i p ~ + Z j q j = l } .  This motion 
remains bounded away from the fixed points we mentioned above, and 
continuous functions achieve their maxima on ~e. Now 

11~p?... p?-~ ... p ~  
d ~ l  = ]/ i 1 

+ ~, m } q r l . . . q 7  '~ ' . . . q 3  M > 0  (20) 
j = l  

Hence infp~ F'>O, and it is bounded away from zero. We now show 
supra F '  < 2. 

If 11 = 2, F' = #(p, + P2 + ql + q2) = # ~ 1, and we are done. (Note that 
the bistochasicity range is [0, 1 ] in this case.) So we may consider n ~> 3. 
By Eqs. (15) we know that the maximum of p71..,  p~ i -1 . . ,  p%~ is achieved 
at 

111 11i-- 1 11N 
Pl n--1  ~ ..... Pi= n _  l ~ ..... P N - n _ 1 7  

where ~ i  Pi = ~, ~2j qj = (1 - 7) are fixed. Hence 

( n, ~ ~ ( n i - l ~  ~-1 ( n u  ~ ~ 

(mi,71 
+ 2 m } \ n _ l  } ""\-~----1/  J 
• . . . ( m "  ~mm(1--~J)n--l} 

\ n -  1/ 

~n 1 

(21) 

822/66/>6-25 
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N o w  use ni(n i -  1) n'-* ~<nT' and ~ i n i = n = Z j  m;, to get 

t . t . t n N , ~ n -  1 F ~<#n [n] '~'" - U -  + m ~ . . . m ~ r ( l _ 7 ) ~  1] (22) 

Thus,  we can write 

F,<~d17~ ~ + d2(l _7 )~  1 

where 

n N  
( r t ~ '  " " r l  N ) 

m M  (m~ l . . .mM ) 

subject to n~ + ...  + n N =- n = m~ + ... + mM. Clearly, we have 
F '  ~< max(d~,  d2). Consider  d~ first. If  N =  2, suppose n = 2n~. Then  n >~ 4 
and 

d l  ~ - -  
nl \ n  -- l J  

( 3n/4 ) , - 1  ( ,A(2_) ,  
= 2 \ ~ - - l J  \ 2 J \ 3 J  

~<n < ~ < 2  (23) 

If N = 2 and  n l > n/2 

n 1 n 1 
d ~ -  1)" ln'~ln'~2<~ )" ~ ( n - 1 ) "  1 < 2  (24) 

n l ( n -  - - n l ( n - 1  

Now,  let N~> 3. Using Eq. (16), we get 

dl<~#n ( n - - N +  1)" N + ~ < ~ # n \ ~ _ l ]  (25) 

and then d~ is smaller than  2 if # < 2(n - 1)N 2/n" Similarly, for M = 2 one 
gets d 2 < 2  if #~< 1/max(mi),  and d2 is smaller than  2 for M~>3 if 
# < 2 ( n - 1 ) M - 2 / n .  Recalling that  n l=max(n i ,  mj), we obta in  the 
result. �9 

It  follows that  zk(p l )  converges exponent ial ly  to a fixed point  as 
k --, o% for all the cases in this section. On  the other  hand,  these cases do 
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not exhaust all the physically meaningful ones, because a part of the 
bistochasticity range has not been covered for a number of reactions. In 
Section 6 we will prove that convergence to the unique fixed point deter- 
mined by the initial conditions holds true for all the remaining cases, 
although we have less explicit control of the convergence in these cases. 
However, it is worth noting that the interest falls mainly on the small 
values of #, which have already been dealt with, when one wants to 
approximate the solution of (1) by (2). 

5. D I F F U S I O N  A N D  T R A N S M U T A T I O N S  

By "transmutations" we mean all the reactions of the form 

nA  ~ - n B ,  n>~ l, A r B 

because these reactions describe the transformation that takes the sub- 
stance A into the substance B, and vice versa, without interactions with 
other substances. We may as well call this kind of reaction "diffusion," as 
we may interpret A as a certain substance in the volume element Vi and B 
as the same substance in the volume element Vi+l contiguous to Vi. Then 
the reaction consists of the diffusion of that substance from V i to V~+ 1 and 
vice versa. In particular, if n = 1, the discrete scheme that describes the time 
evolution of the system under r coincides with the very well known central 
difference approximation of the classical diffusion operator - z / .  The time 
evolution wilt be described by 

P'A = P A -- n# (P  A -- P"e) 

P'B = PB + nl~(p~ -- p~ )  
(26) 

where the bistochasticity range is /~ ~ [-0, I /n ]  and PB = 1 - P A .  Therefore 
we have a map of [0, 1 ] onto itself: 

P'A = PA + n#[(1 -- pA)  n -- p ~ ]  = "r(pA) (27) 

Clearly, ~ has a unique fixed point: ~ =  1/2. We are going to prove the 
following: 

Lemma 5. l i m k ~ k ( p A ) = f i - ~ A V P A e [ O ,  1] and V n e N  i f f 0 < p <  
l /n.  

Proo f .  Because of the fact that PB = 1 - - P A ,  we can limit ourselves to 
the case PA < 1/2, as the case PA > 1/2 can be treated in the same way 
by considering PB as our variable. Then, assuming p~ < 1/2, we have 
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Z ( p A ) > p A  and there are two possible cases: (i) " C ( p A ) ~ l / 2  and (ii) 
z ( p A )  > 1/2. Clearly, ]z(PA) -- 1/2] < IPA - -  1/21, in the first case. So we only 
need to check what  m a y  happen  in the second case. Let us consider n = 1 
first. Then 

1 
z(PA)--5=PA+P[(1--pA)--PA]--~<5--P~I  1 (28) 

if and only if/~ < 1. Then  consider n/> 2 and observe that  

(1 --  pA)  "+1 --pnA+' < (1 --  pA)  n -  pn A (29) 

for PA < 1/2. Therefore  we have 

1 /7 1 
P'A-- g =  PA + n p [ ( 1 - -  p A ) " - -  P A ] - -  I 5 <  pA + (1 - - p A )  n -- PA 

< ~ p A + ( 1 - - p A ) - - P A - - � 8 9 1 8 9  (30) 

iff p <  1/n. Finally, we combine  (i) and (ii) and we get 
Iz(PA) - 1/21 < IPA -- 1/2q in the case that  p < 1/n. The convergence follows. 

If, instead, kL = l /n ,  then we may  choose PA = 0 and get 

z ( p A ) = O +  ( 1 - 0 ) " - 0 =  1 

"C2(pA) = 1 + (1 - 1 ) " -  1 - - 0  

f rom which it is clear that  the process does not  converge to the fixed point. 
Since this is the limiting case, the occurrence of this bifurcation does not  
give rise to chaotic  evolution.  The  l emma  is proved.  �9 

We can finally discuss in deeper detail the case / l  = 1In. Here the result 
is: 

Lemma 6. If n ~> 3 and p = 1/n, then limk ~ co " c k ( P . 4 )  = 

p---~ VpA ~ (0, 1). If  n = 1 or  n = 2 and g = l /n ,  then ~ is a permutat ion.  

Proo f .  I f n = l o r n = 2 a n d # = l / n ,  w e h a v e  

P'A = PA + 1 -- 2pA = 1 --  PA = PB 

Therefore  the m a p  ~ is a permuta t ion .  
If n>~3 and 0 < p A  < 1/2, then Z ( p A ) > p A  and again we have two 

possible cases: (i) Z(p A)<~I /2  and (ii) z ( p A ) > l / 2 .  Case (i) yields 
Iz(PA) -- 1/21 < IPA - -  1/21. Fo r  case (ii) and n = 3, we have 

v(P A) = P A + 3p(1 -- 3p A + 3pZA -- 2p 3) (31) 
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Therefore r ( p A ) -  1/2 < 1 / 2 -  PA for PA ~ (0, 1/2). Hence, recalling Eq. (29), 
we can conclude that 

Iv(PA)-�89 < IPA--�89 

for every map r relating to # = 1/n for n ~> 3. This proves the lemma. [] 

6. STABILITY OF THE FIXED POINTS A N D  
ENTROPY INCREASE 

As we have seen, given any balanced nonautocatalytic reaction, the 
iterations of the corresponding map ~ will drive the system to a well-deter- 
mined fixed point. Such a fixed point satisfies 

p~l. . ,  n~, m~ .. PN--ql" q~t M=0 (32) 

which describes a smooth (N+M-1)-dimensional manifold in RN+M, 
and it satisfies the N + M - 1  equations (18). Note that the system 
(32) + (18) has a unique solution in the simplex of probability measures 2. 
As one of the constants of the motion is not independent of the others, 
because P. Pi + 52 qj = 1 is fixed, we get that the set of fixed points of z is 
an ( N + M - 2 ) - p a r a m e t e r  family. One element is singled out of this set 
whenever one set of constants of motion (hyperplanes of the motion) is 
given. The intersection of the hyperplanes of the motion is a 1-dimensional 
subspace (the line of the motion) of Nu+ ~t; therefore, many different initial 
conditions correspond to the same set of constants of motion. 

Concerning the stability of the fixed points of a given z, we observe 
that the case of transmutations shows one fixed point only which is trivially 
stable, and it is an attractor for every point in [0, 1] if # < 1In. For all the 
other reactions, we use the fact that the zeros of a real polynomial are 
continuous functions of the coefficients of the polynomial itself, and the fact 
that the constants of motion imply 

p~l nU m l . . .  "''PN --ql q~u ~ 
~2 1 )]"N 

_[ l (Ka_mlp l ) ]  ml...[1 (KM_mMp,)] mM (33) 

which is a polynomial whose coefficients depend continuously on the initial 
conditions. Moreover, the lines of the motion of all possible initial condi- 
tions are all parallel. Then the stability of all the fixed points of ~ follows 
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from this, from the fact that all the nontrivial fixed points attract every 
initial condition in their line of the motion, and from the fact that the line 
of the motion of a trivial fixed point P intersects the simplex ~ in P only. 
Here, by trivial fixed points we mean those that correspond to one p~ and 
one qj equal to zero. 

Finally, we note that the fixed point p'~ corresponding to a given 
choice of the initial conditions maximizes the entropy S(p~) along the line 
of the motion, as the map is entropy nondecreasing and every initial condi- 
tion along such a line converges to p'~, under its iterations, for certain 
values of the parameter. Furthermore,  

S(pl)  = - - E  Pi(Pl ) log  P i ( P l ) - - E  qj (P l ) log  %(Pl)  

and 

dS 
- - = 0  if and only if P l=P 'x  dp~ 

We conclude that S(p~)< S(p'~) unless pj = p'~, but more can be proven. 
Consider the general balanced reaction 

n l A l  + . . .  +nuAN,_~_mlBl  + . . .  + m M B  v 

where this time some of the A's may equal some of the B's. Let N a be the 
number of autocatalytic elements, and n=Y~in  i. Every entry of the 
associated (N + M -  Na) n x (N + M -  Na) n bistochastic matrix T represents 
the scattering probability for a given channel C i~+- - .  + C i - - ,  Cj~+ 
�9 .. +Cj , ,  and will be written as Ti~...i,;j~...s,. Here we take C~=Ai  for 

i =  1,..., N and C~+N=B ~ for i =  1,..., M - - N a .  The remaining B's coincide 
with some of the A's. For  simplicity we choose the same scattering prob- 
ability for this channel as for the channel rck(Cz~ ..... C~,) ~ ( C j I , . . . ,  Cso) 
where r~ k and ~z~ are any two permutations. Therefore, we can introduce an 
Abelian group (G,-),  with generators C1,..., CN+M No, and call % its 
words of length n. These constitute a set of K =  ( N + M - N ~ )  ~ elements. 
Then we can write T/~...~,;jI...j = T~,;o~j. As we assume the principle of 
microscopic reversibility, we have Toni; o,, = T~,. ~s" Also, T~,; % is vanishing 
for those processes o~ + mj that are not allowed. Now, let ml = A71' '" A ~  
and co 2 = BT ~. '~M �9 . Ba4. Then 

T~,,;oi>0 for i =  1, 2 and Tool;m2 > 0  

provided that the rate constant of the reaction is neither zero nor equal to 
the upper bound of the bistochasticity range. Also, one gets To,~;~o~ = 0 if 
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k r  Then, because of the bistochasticity of T, we have 
Z~.~ T~o~; ~(o~k)= 1, which, for i =  1, 2, becomes 

T~i;~(~o~)+~ To~;~(%)=l for i r  
fr 

where 7c has been used to stress that all the permutations must be taken. 
By the symmetry of T we have thus isolated a bistochastic block in it, 
T'=[T~ki~i);~(~oj)]~,i=l, 2, whose elements are all positive. Therefore, 
(T ' )~ j > 0  for every i and j, which implies that the corresponding 
Boltzmann map r increases the entropy, unless the input probability is a 
fixed point. (2/ Then, by Theorem 3 in ref. 2 the convergence to the unique 
fixed point determined by the initial conditions follows. 

We have thus proven the following result. 

T h e o r e m .  Consider a balanced, nonautocatalytic reaction r that 
comes from a bistochastic process. If the coupling constant # belongs to 
(0,/~0), where #0 is the upper limit of the bistochasticity range, then: 

(a) All the fixed points of r are stable and constitute an (N + M -  2)- 
parameter family. 

(b) Every choice of the initial conditions different from a fixed point 
converges to the corresponding fixed point. 

(c) The entropy S is a strict Liapunov function for r. 

If/~ = #0 and the iterations of P(0) under r converge to the corresponding 
fixed point, then the entropy is nondecreasing and there is a k e  N such 
that S(rk(P(0)))> S(P(O)), unless P(0) is a fixed point. 

7. C O N C L U S I O N S  

We have studied the dynamics of the general chemical reaction 

n~A1+ . . .  + n N A N ~ - m ~ B ~  + "'" + m M B M  

with any number of chemicals and stoichiometry, as given by the law of 
mass action for stirred systems. We have identified the obvious fixed points, 
and apart from these, the system converges from any initial conditions to 
the unique equilibrium point, which is therefore a global attractor, 
whenever the coupling constant /~ lies in the appropriate range. We show 
that the fixed points are all stable, as a consequence of the smoothness of 
the manifold to which they belong, and that they are characterized as states 
of maximum entropy, given the conserved quantities as constraints. 
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The reactions we have considered are all balanced. However, many 
reactions that appear in the specialized literature do not appear to be 
balanced. Such reactions can be treated within the theory that we have 
developed via the introduction of extra particles, e.g., photons, that carry 
away part of the energy of the reacting species. In this way we can balance 
any given reaction; for example, we can transform 

02 + 2H2 ~ 2H20 

by adding one photon 7, in order to get the balanced reaction 

O2 + 2H2 ~,~- 2H20 + 7 

This makes perfect sense in classical probability theory provided that the 
energy of the 7 is positive. The occurrence of such 7's provides us also with 
a tool for modeling the rate constants of those reactions that proceed 
mostly in one direction. In our example, the reaction proceeds mostly from 
the left to the right provided that p~(0) is small. The opposite occurs if 
p~(0) is big. This may be interpreted as a temperature dependence of the 
rate constants. Apart from these considerations, there is also the fact that 
to every balanced reaction we can associate a bistochastic matrix, which is 
known to be the only class of linear operators that do not decrease the 
entropy, in general. (s/ 
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